Perturbations of Nonlinear Maximal Monotone Sets in Banach Space *

نویسنده

  • A. PAZY
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

A New Topological Degree Theory for Densely Defined Quasibounded (s̃+)-perturbations of Multivalued Maximal Monotone Operators in Reflexive Banach Spaces

Let X be an infinite-dimensional real reflexive Banach space with dual space X∗ and G⊂ X open and bounded. Assume that X and X∗ are locally uniformly convex. Let T : X ⊃ D(T) → 2X be maximal monotone and C : X ⊃ D(C) → X∗ quasibounded and of type (S̃+). Assume that L ⊂ D(C), where L is a dense subspace of X , and 0 ∈ T(0). A new topological degree theory is introduced for the sum T +C. Browder’s...

متن کامل

On the surjectivity properties of perturbations of maximal monotone operators in non-reflexive Banach spaces

We are concerned with surjectivity of perturbations of maximal monotone operators in non-reflexive Banach spaces. While in a reflexive setting, a classical surjectivity result due to Rockafellar gives a necessary and sufficient condition to maximal monotonicity, in a nonreflexive space we characterize maximality using a “enlarged” version of the duality mapping, introduced previously by Gossez....

متن کامل

On the Eigenvalue Problem for Perturbed Nonlinear Maximal Monotone Operators in Reflexive Banach Spaces

Let X be a real reflexive Banach space with dual X∗ and G ⊂ X open and bounded and such that 0 ∈ G. Let T : X ⊃ D(T ) → 2X be maximal monotone with 0 ∈ D(T ) and 0 ∈ T (0), and C : X ⊃ D(C) → X∗ with 0 ∈ D(C) and C(0) = 0. A general and more unified eigenvalue theory is developed for the pair of operators (T,C). Further conditions are given for the existence of a pair (λ, x) ∈ (0,∞)× (D(T + C) ...

متن کامل

Eigenvalues and Ranges for Perturbations of Nonlinear Accretive and Monotone Operators in Banach Spaces

Various eigenvalue and range results are given for perturbations of m-accretive and maximal monotone operators. The eigenvalue results improve and extend some recent results by Guan and Kartsatos, while the range theorem gives an affirmative answer to a recent problem of Kartsatos.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006